Collaborative filtering Scalable approaches using restricted Boltzmann machines
نویسنده
چکیده
منابع مشابه
A non-IID Framework for Collaborative Filtering with Restricted Boltzmann Machines
We propose a framework for collaborative filtering based on Restricted Boltzmann Machines (RBM), which extends previous RBMbased approaches in several important directions. First, while previous RBM research has focused on modeling the correlation between item ratings, we model both user-user and item-item correlations in a unified hybrid non-IID framework. We further use real values in the vis...
متن کاملCumulative Restricted Boltzmann Machines for Ordinal Matrix Data Analysis
Ordinal data is omnipresent in almost all multiuser-generated feedback questionnaires, preferences etc. This paper investigates modelling of ordinal data with Gaussian restricted Boltzmann machines (RBMs). In particular, we present the model architecture, learning and inference procedures for both vector-variate and matrix-variate ordinal data. We show that our model is able to capture latent o...
متن کاملConditional Restricted Boltzmann Machines for Cold Start Recommendations
Restricted Boltzman Machines (RBMs) have been successfully used in recommender systems. However, as with most of other collaborative filtering techniques, it cannot solve cold start problems for there is no rating for a new item. In this paper, we first apply conditional RBM (CRBM) which could take extra information into account and show that CRBM could solve cold start problem very well, espec...
متن کاملExplainable Restricted Boltzmann Machines for Collaborative Filtering
Most accurate recommender systems are black-box models, hiding the reasoning behind their recommendations. Yet explanations have been shown to increase the user’s trust in the system in addition to providing other benefits such as scrutability, meaning the ability to verify the validity of recommendations. This gap between accuracy and transparency or explainability has generated an interest in...
متن کاملConditional Restricted Boltzmann Machines for Structured Output Prediction
Conditional Restricted Boltzmann Machines (CRBMs) are rich probabilistic models that have recently been applied to a wide range of problems, including collaborative filtering, classification, and modeling motion capture data. While much progress has been made in training non-conditional RBMs, these algorithms are not applicable to conditional models and there has been almost no work on training...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2010